Cytometric analysis of immune cell populations in clinical tumor biopsy tissue microarrays for immuno-oncology
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Introduction

Cancer is a deadly complex disease that affects millions around the world each
year. Variability in disease etiology leads to challenges in selecting treatments
that will maximize the patient's quality of life and overall survival. It is essential
for health care providers to know the extent of a patient's cancer to better
prescribe a treatment to improve prognosis. However, current methods of
patient diagnosis are qualitative and/or semi-quantitative and may not include
the impact of the tumor micro-environment on patient treatment and outcome.
Therefore, we have developed a method utilizing 12-plex fluorescence imaging,
quantitative image analysis, as well as cytometric analysis of immune cell
populations to better categorize patients and determine the best treatment
strategy for the individual patient.

“[Tlhere is considerable heterogeneity within each TME category, adding uncertainty to the reproducibility of the

current classification of “cold” vs. "hot"” vs. “intermediate” immune-subtypes.”
- Bairi et al., Nature Breast Cancer (2021) 7:150;
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Materials and Methods

Multiplex labeling was completed on human breast cancer tissue microarray (TMA) (XBra089-01)
using traditional immunofluorescence labeling techniques. The TMA was rehydrated through
decreasing ethanol concentrations, followed by antigen retrieval in citrate buffer. Labeling of the TMA
was completed in 4 panels with a control nuclear stain DAPI, designed to reduce cross-reactivity and
promote labeling sensitivity. Removal of antibody labeling between panels was completed using Visikol
Inc's proprietary stripping reagent EasyPlex™. Imaging was completed at 40x on the Leica Versa 8
slide scanner.

Once the fluorescence imaging was complete, HALO v3.3 was used for the analysis by first using the
HALO TMA module to tile the cores into individual image sets. The individual cores were analyzed
using the HALO Highplex module v4.0.4, to perform cell segmentation and marker colocalization.
Subsequently, the HALO Spatial Analysis module was utilized to perform a proximity analysis between
different cell subtypes. After exporting this data from HALO as a .csv file, well-established python
libraries (Pandas, SciPy, and Scikit-Learn), were used to analyze the data.

Quantitative measurement data were normalized and standardized using the standard scaling
technique resulting in mean-centered values representing the number of standard deviations from the
mean. To select a subset of features based on their contribution to the variation between groups,
feature selection was performed using the F-test. To visualize patient population-wide variation and
clustering from the selected feature subsets, principal component analysis (PCA) was conducted.
Clustering of samples and measurements was conducted using hierarchical agglomerative clustering
of the Euclidean distance matrix from selected feature subsets.
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Figure 1: Clustered Heatmap of patients (color coded along top x-axis by stage, see legend) for all measured immunophenotypical Figure 2: Correlogram depicting correlational trends between interacting subtypes of immune cells within the tumor
features measured in the cohort. As indicated, several clear subcategories emerge, representing a spectrum from highly active immune microenvironment measured within the cohort. Several distinct relationships were detected, highlighted in red
immune response (green dashed outlines) and immunosuppressive response (red dashed outlines) outlines on the figure.
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Figure 3B (above): Factor loadings map (left) and plot depicting 15t and 2" principal component (right) calculated for each
sample within the cohort using selected immunophenotypical features depicted in Figure 3A colored by cancer stage at
Figure 3A: Rank-order of feature-importance measured via the diagnosis. Dotted ellipses depict 95% confidence interval for cancer stage. -4 4
F-test illustrating features most significant to accounting for Figure 3C (right): Principal component plot depicting same points as Figure 3B, colored by immunological stage determined
differences between stages of patients within the cohort. by immunophenotypical fingerprinting of cohort population.
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Figure 4: An illustration of the immune microenvironment response within the tumor (bottom left), which shows how tumor cells are eliminated at first by immune cells, then go into equilibrium with the immune system, and finally
escape the immune system altogether. The dendrogram (top left) shows how the patients fit this pattern, and the clustered heatmap (right) further shows this by highlighting features prevalent at each of the stages in the immune
microenvironment response.
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Results and Discussion

Intercommunication between immune cells and the tumor microenvironment
(TME) is a dynamic process that consists of complex feedback between
immunosurveillance and tumor progression, known as immunoediting.
Immunoediting progresses to impact aspects of tumor biology in three
distinct phases: elimination, equilibrium, and escape. During the “elimination
phase,” the TME consists of innate and adaptive immune responses to tumor
cells, which in earlier stages contribute to the elimination of tumor cells.
However, adaptive pressure upon the tumor cells which survive causes shifts
in the phenotype of the tumor cells towards the “equilibrium phase”"—during
which the TME transitions towards a non-immunogenic phenotype,
promoting tumor progression. Cells that survive by acquired resistance to
elimination enter the "escape phase”, promoting cancer cell growth and
expansion in an uncontrolled manner. At this stage, the tumor
immunophenotype is non-immunogenic, very few immune cells are detected,
and the tissue resembles healthy tissue from an immunological perspective.

Utilizing 12-plex fluorescence imaging of TMA, quantitative image analysis, as
well as cytometric analysis of immune cell populations we showed discrete
subpopulations of breast cancer patients exhibiting immunological signatures
across the transitional phases of immunoediting (Figure 1). Several distinctive
immunological phenotypes were observed, ranging from highly inflamed
patients with significant T-cell-macrophage interactions, to a large number
of patients with immunological phenotypes indistinguishable from healthy
patients (see groupings in Figure 1). To better understand correlations
between cell-cell interactions within the TME, a correlogram was generated,
and as indicated on Figure 2, there was a high degree of correlation between
the coincidence of interactions between macrophages and various T-
cells/NK-cell subtypes, and proximity to immune checkpoint inhibitor PD-L1,
promoting the treatment of this subgroup of patients with immune
checkpoint inhibitors such as PD-L1 inhibitors.

Using statistical techniques, the most significant measurements (i.e.
“features"”) of differences in immunological phenotype between patients in
different stages of cancer progression were ranked using the F-test (Figure
3A) and selecting measurements based on a p-value threshold. The resulting
subset of measurements (highlighted in orange on Figure 3A). was used for
subsequent analyses. To visualize the contributions of the features to the
population-wide variation among patients, principal component analysis
(PCA) was conducted, selecting the first and second component for plotting
on the x and y axis, respectively. The factor-loadings map, shown in the left
panel of Figure 3B, illustrates the contributions of each measurement to the
variation across the population. The PCA plot shown in the right-side panel of
Figure 3B is colored by the patient's stage, with confidence ellipses around
the patients in each stage, illustrating significant heterogeneity of
immunophenotype within each stage, as seen by the high degree of overlap
between the stages on the plot. Figure 3C depicts the same plot as Figure 3B,
however the plot is colored by the proposed phase of immunoediting which
the phenotype corresponds to, as determined by the clustering analysis
described in Figure 4. Figure 3C illustrates the clear delineation of the
transition from the "elimination” phase to the "escape” phase. The proper
determination of the immunophenotype corresponding to each phase of the
immunoediting transition is critical to personalized medicine and to properly
identify suitable therapeutic treatments for a given patient.




